We explore the maximum likelihood degree of a homogeneous polynomial $F$ on a projective variety $X$, $\mathrm{MLD}_F(X)$, which generalizes the concept of Gaussian maximum likelihood degree. We show that $\mathrm{MLD}_F(X)$ is equal to the count of critical points of a rational function on $X$, and give different geometric characterizations of it via topological Euler characteristic, dual varieties, and Chern classes.

Di Rocco, S., Gustafsson, L., Schaffler, L. (2024). Gaussian Likelihood Geometry of Projective Varieties. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 8(1), 89-113 [10.1137/22m1526113].

Gaussian Likelihood Geometry of Projective Varieties

Schaffler, Luca
2024-01-01

Abstract

We explore the maximum likelihood degree of a homogeneous polynomial $F$ on a projective variety $X$, $\mathrm{MLD}_F(X)$, which generalizes the concept of Gaussian maximum likelihood degree. We show that $\mathrm{MLD}_F(X)$ is equal to the count of critical points of a rational function on $X$, and give different geometric characterizations of it via topological Euler characteristic, dual varieties, and Chern classes.
2024
Di Rocco, S., Gustafsson, L., Schaffler, L. (2024). Gaussian Likelihood Geometry of Projective Varieties. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 8(1), 89-113 [10.1137/22m1526113].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/467349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact