The 39.8-ka Campanian Ignimbrite was emplaced during a large caldera-forming eruption of Campi Flegrei near Naples, Italy. The ignimbrite is found up to 80 km from the caldera, and co-ignimbrite ash-fall deposits occur 3200 km away. The proximal and distal stratigraphy of the Campanian Ignimbrite has not been definitively correlated due to the dissimilar appearance of the proximal and distal deposits, a lack of medial exposures, and the inconsistency and heterogeneity of the proximal stratigraphy. Here, we document the majorelement glass-shard chemistry, matrix componentry, and lithic componentry of the proximal and distal stratigraphic sequences of the ignimbrite to attempt to correlate the units. The results of these disparate observations taken together suggest that the established stratigraphic units cannot be directly and uniquely correlated between the proximal and distal regions and that neither the proximal nor distal stratigraphy provides a record of the entire eruptive sequence. However, the characteristics studied can be used to demarcate eruptive phases that are connected to some of the defined units in the proximal and distal stratigraphy.
Gallo, R.I., Ort, M.H., Iacovino, K., Silleni, A., Smith, V.C., Giordano, G., et al. (2024). Reconciling complex stratigraphic frameworks reveals temporally and geographically variable depositional patterns of the Campanian Ignimbrite. GEOSPHERE, 20(1), 1-22 [10.1130/ges02651.1].
Reconciling complex stratigraphic frameworks reveals temporally and geographically variable depositional patterns of the Campanian Ignimbrite
Silleni, Aurora;Giordano, Guido;
2024-01-01
Abstract
The 39.8-ka Campanian Ignimbrite was emplaced during a large caldera-forming eruption of Campi Flegrei near Naples, Italy. The ignimbrite is found up to 80 km from the caldera, and co-ignimbrite ash-fall deposits occur 3200 km away. The proximal and distal stratigraphy of the Campanian Ignimbrite has not been definitively correlated due to the dissimilar appearance of the proximal and distal deposits, a lack of medial exposures, and the inconsistency and heterogeneity of the proximal stratigraphy. Here, we document the majorelement glass-shard chemistry, matrix componentry, and lithic componentry of the proximal and distal stratigraphic sequences of the ignimbrite to attempt to correlate the units. The results of these disparate observations taken together suggest that the established stratigraphic units cannot be directly and uniquely correlated between the proximal and distal regions and that neither the proximal nor distal stratigraphy provides a record of the entire eruptive sequence. However, the characteristics studied can be used to demarcate eruptive phases that are connected to some of the defined units in the proximal and distal stratigraphy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.