In the last decades, a wide range of methods have been proposed for the analysis of compliant mechanisms. In this investigation, the theory of the ellipse of elasticity is tailored to the linear kinetostatic analysis of flexible systems. The proposed approach exploits the antiprojective polarity transformations of the conic associated to the generic two-port elastic suspension. According to the presented method, the elastostatic features of flexible elements with complex geometries, and of compliant mechanisms with serial, parallel, and hybrid topologies, can be represented by a unique geometric entity. As a consequence, the deflection analysis problem is reduced to a geometric problem with a straightforward solution. A specific procedure is developed both at the element and at the mechanism levels, to completely describe field of displacements and loads distribution in the elastic suspension. The application of the method is exemplified considering the analysis of different flexures and of a compliant four-bar linkage.

Sorgona, O., Belfiore, N.P., Giannini, O., Verotti, M. (2023). Application of the ellipse of elasticity theory to the functional analysis of planar compliant mechanisms. MECHANISM AND MACHINE THEORY, 184 [10.1016/j.mechmachtheory.2023.105308].

Application of the ellipse of elasticity theory to the functional analysis of planar compliant mechanisms

Belfiore N. P.;
2023-01-01

Abstract

In the last decades, a wide range of methods have been proposed for the analysis of compliant mechanisms. In this investigation, the theory of the ellipse of elasticity is tailored to the linear kinetostatic analysis of flexible systems. The proposed approach exploits the antiprojective polarity transformations of the conic associated to the generic two-port elastic suspension. According to the presented method, the elastostatic features of flexible elements with complex geometries, and of compliant mechanisms with serial, parallel, and hybrid topologies, can be represented by a unique geometric entity. As a consequence, the deflection analysis problem is reduced to a geometric problem with a straightforward solution. A specific procedure is developed both at the element and at the mechanism levels, to completely describe field of displacements and loads distribution in the elastic suspension. The application of the method is exemplified considering the analysis of different flexures and of a compliant four-bar linkage.
2023
Sorgona, O., Belfiore, N.P., Giannini, O., Verotti, M. (2023). Application of the ellipse of elasticity theory to the functional analysis of planar compliant mechanisms. MECHANISM AND MACHINE THEORY, 184 [10.1016/j.mechmachtheory.2023.105308].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/471421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact