Amphibians are particularly sensitive to habitat loss and fragmentation caused by the intensification and modernization of farming occurring in the second half of the twentieth century in the Mediterranean basin. However, artificial water bodies, associated with traditional husbandry, proved to be important surrogate for amphibian feeding and reproduction. Here, multilocus genotypes were used to investigate the spatial population structure of Lissotriton vulgaris meridionalis and the role of drinking troughs in supporting viable breeding populations within a rural landscape interested by traditional husbandry and agriculture. Our genetic analysis highlighted the conservation value and the potential stepping-stone function of artificial aquatic sites in the dispersal of the species and for the gene flow maintenance. Indeed, populations of drinking troughs show allelic richness and heterozygosity levels comparable to those from natural ponds and there is no great evidence of genetic bottlenecks. A complex system of artificial aquatic sites and few natural wetlands was identified sustaining a well-structured network of demes highly interconnected with themselves and natural aquatic sites. The conservation of the identified genetic clusters may be useful to prevent further population declines and future loss of genetic diversity within the study area characterized by scarce natural wetlands that frequently dried because of agricultural practices and strong seasonality. Site-specific protection measures are needed to contrast the progressive disappearance of drinking troughs observed in the last years in Italy because of the abandonment of traditional farming practices in favour of modern agriculture and intensive farming.
Buono, V., Bissattini, A.M., Davoli, F., Mengoni, C., Mucci, N., Vignoli, L. (2023). Fine-scale spatial genetic structure and dispersal among Italian smooth newt populations in a rural landscape. SCIENTIFIC REPORTS, 13(1) [10.1038/s41598-023-47265-8].
Fine-scale spatial genetic structure and dispersal among Italian smooth newt populations in a rural landscape
Buono V.
;Bissattini A. M.;Mucci N.;Vignoli L.
2023-01-01
Abstract
Amphibians are particularly sensitive to habitat loss and fragmentation caused by the intensification and modernization of farming occurring in the second half of the twentieth century in the Mediterranean basin. However, artificial water bodies, associated with traditional husbandry, proved to be important surrogate for amphibian feeding and reproduction. Here, multilocus genotypes were used to investigate the spatial population structure of Lissotriton vulgaris meridionalis and the role of drinking troughs in supporting viable breeding populations within a rural landscape interested by traditional husbandry and agriculture. Our genetic analysis highlighted the conservation value and the potential stepping-stone function of artificial aquatic sites in the dispersal of the species and for the gene flow maintenance. Indeed, populations of drinking troughs show allelic richness and heterozygosity levels comparable to those from natural ponds and there is no great evidence of genetic bottlenecks. A complex system of artificial aquatic sites and few natural wetlands was identified sustaining a well-structured network of demes highly interconnected with themselves and natural aquatic sites. The conservation of the identified genetic clusters may be useful to prevent further population declines and future loss of genetic diversity within the study area characterized by scarce natural wetlands that frequently dried because of agricultural practices and strong seasonality. Site-specific protection measures are needed to contrast the progressive disappearance of drinking troughs observed in the last years in Italy because of the abandonment of traditional farming practices in favour of modern agriculture and intensive farming.File | Dimensione | Formato | |
---|---|---|---|
Buono_et_al-2023-Scientific_Reports.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.