The Tick-borne encephalitis virus (TBEV) causes different disease symptoms varying from asymptomatic infection to severe encephalitis and meningitis suggesting a crucial role of the human host immune system in determining the fate of the infection. There is a need to understand the mechanisms underpinning TBEV-host interactions leading to protective immunity. To this aim, we studied the response of human peripheral blood mononuclear cells (PBMC) to the whole formaldehyde inactivated TBEV (I-TBEV), the drug substance of Encepur, one of the five commercially available vaccine. Immunophenotyping, transcriptome and cytokine profiling of PBMC revealed that I-TBEV generates differentiation of a sub-population of plasmacytoid dendritic cells (pDC) that is specialized in type I interferon (IFN) production. In contrast, likely due to the presence of aluminum hydroxide, Encepur vaccine was a poor pDC stimulus. We demonstrated I-TBEV-induced type I IFN together with Interleukin 6 and BAFF to be critical for B cell differentiation to plasmablasts as measured by immunophenotyping and immunoglobulin production. Robust type I IFN secretion was induced by pDC with the concerted action of both viral E glycoprotein and RNA mirroring previous data on dual stimulation of pDC by both S. aureus and influenza virus protein and nucleic acid that leads to a type I IFN-mediated sustained immune response. E glycoprotein neutralization or high temperature denaturation and inhibition of Toll-like receptor 7 signalling confirmed the importance of preserving the functional integrity of these key viral molecules during the inactivation procedure and manufacturing process to produce a vaccine able to stimulate strong immune responses.Author summaryThough vaccination is generally considered effective in reducing tick-borne encephalitis (TBE) incidence, several studies have shown that the antibody response to TBEV vaccination declines with age resulting in more frequent TBE cases among 50+ year-old vaccinees. These observations together with the lack of a specific antiviral drug impose to pinpoint novel host- and pathogen-directed therapies and to improve the control of vaccine efficacy. Thus, we interrogated in vitro human PBMC, whose response to TBEV may provide a picture closer to what occurs in vivo in humans after vaccination or natural infection compared to animal models. The role of E glycoprotein and viral RNA in promoting antiviral and B cell-mediated responses was investigated. Thus, these key viral molecules should be considered, in future, for novel subunit vaccine formulations than the current whole inactivated TBEV-based vaccines, which require laborious manipulation in biosafety level-3 laboratory and animal testing for manufacturing and batch release.

Etna, M.P., Signorazzi, A., Ricci, D., Severa, M., Rizzo, F., Giacomini, E., et al. (2021). Human plasmacytoid dendritic cells at the crossroad of type I interferon-regulated B cell differentiation and antiviral response to tick-borne encephalitis virus. PLOS PATHOGENS, 17(4) [10.1371/journal.ppat.1009505].

Human plasmacytoid dendritic cells at the crossroad of type I interferon-regulated B cell differentiation and antiviral response to tick-borne encephalitis virus

Ricci, Daniela;Rizzo, Fabiana;Coccia, Eliana M.
2021-01-01

Abstract

The Tick-borne encephalitis virus (TBEV) causes different disease symptoms varying from asymptomatic infection to severe encephalitis and meningitis suggesting a crucial role of the human host immune system in determining the fate of the infection. There is a need to understand the mechanisms underpinning TBEV-host interactions leading to protective immunity. To this aim, we studied the response of human peripheral blood mononuclear cells (PBMC) to the whole formaldehyde inactivated TBEV (I-TBEV), the drug substance of Encepur, one of the five commercially available vaccine. Immunophenotyping, transcriptome and cytokine profiling of PBMC revealed that I-TBEV generates differentiation of a sub-population of plasmacytoid dendritic cells (pDC) that is specialized in type I interferon (IFN) production. In contrast, likely due to the presence of aluminum hydroxide, Encepur vaccine was a poor pDC stimulus. We demonstrated I-TBEV-induced type I IFN together with Interleukin 6 and BAFF to be critical for B cell differentiation to plasmablasts as measured by immunophenotyping and immunoglobulin production. Robust type I IFN secretion was induced by pDC with the concerted action of both viral E glycoprotein and RNA mirroring previous data on dual stimulation of pDC by both S. aureus and influenza virus protein and nucleic acid that leads to a type I IFN-mediated sustained immune response. E glycoprotein neutralization or high temperature denaturation and inhibition of Toll-like receptor 7 signalling confirmed the importance of preserving the functional integrity of these key viral molecules during the inactivation procedure and manufacturing process to produce a vaccine able to stimulate strong immune responses.Author summaryThough vaccination is generally considered effective in reducing tick-borne encephalitis (TBE) incidence, several studies have shown that the antibody response to TBEV vaccination declines with age resulting in more frequent TBE cases among 50+ year-old vaccinees. These observations together with the lack of a specific antiviral drug impose to pinpoint novel host- and pathogen-directed therapies and to improve the control of vaccine efficacy. Thus, we interrogated in vitro human PBMC, whose response to TBEV may provide a picture closer to what occurs in vivo in humans after vaccination or natural infection compared to animal models. The role of E glycoprotein and viral RNA in promoting antiviral and B cell-mediated responses was investigated. Thus, these key viral molecules should be considered, in future, for novel subunit vaccine formulations than the current whole inactivated TBEV-based vaccines, which require laborious manipulation in biosafety level-3 laboratory and animal testing for manufacturing and batch release.
2021
Etna, M.P., Signorazzi, A., Ricci, D., Severa, M., Rizzo, F., Giacomini, E., et al. (2021). Human plasmacytoid dendritic cells at the crossroad of type I interferon-regulated B cell differentiation and antiviral response to tick-borne encephalitis virus. PLOS PATHOGENS, 17(4) [10.1371/journal.ppat.1009505].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/475908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact