Author summary SARS-CoV-2 pandemic has resulted in millions of infections and deaths worldwide, yet the role of host innate immune responses in COVID-19 pathogenesis remains only partially characterized. Innate immunity represents the first line of host defense against viruses. Upon viral recognition, the secretion of type I and III interferons (IFN) establishes the cellular state of viral resistance, and contributes to induce the specific adaptive immune responses. Moving from in vitro evidences on the protective role played by plasmacytoid dendritic cells (pDC)-released type I IFN in the early phase of SARS-CoV-2 infection, here we characterized ex vivo the pDC phenotype and the balance between anti-viral and pro-inflammatory cytokines of COVID-19 patients stratified according to disease severity. Our study confirms in COVID-19 the crucial and protective role of pDC/type I IFN axis, whose deeper understanding may contribute to the development of novel pharmacological strategies and/or host-directed therapies aimed at boosting pDC response since the early phases of SARS-CoV-2 infection.SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.
Severa, M., Diotti, R.A., Etna, M.P., Rizzo, F., Fiore, S., Ricci, D., et al. (2021). Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection. PLOS PATHOGENS, 17(9) [10.1371/journal.ppat.1009878].
Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection
Rizzo, Fabiana;Ricci, Daniela;Coccia, Eliana M.
2021-01-01
Abstract
Author summary SARS-CoV-2 pandemic has resulted in millions of infections and deaths worldwide, yet the role of host innate immune responses in COVID-19 pathogenesis remains only partially characterized. Innate immunity represents the first line of host defense against viruses. Upon viral recognition, the secretion of type I and III interferons (IFN) establishes the cellular state of viral resistance, and contributes to induce the specific adaptive immune responses. Moving from in vitro evidences on the protective role played by plasmacytoid dendritic cells (pDC)-released type I IFN in the early phase of SARS-CoV-2 infection, here we characterized ex vivo the pDC phenotype and the balance between anti-viral and pro-inflammatory cytokines of COVID-19 patients stratified according to disease severity. Our study confirms in COVID-19 the crucial and protective role of pDC/type I IFN axis, whose deeper understanding may contribute to the development of novel pharmacological strategies and/or host-directed therapies aimed at boosting pDC response since the early phases of SARS-CoV-2 infection.SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.