Aquatic plants, seagrasses, macrophytes, mangroves, and riparian vegetation are responsible for some of the most important ecosystem services provided on the Earth. Given their role in trapping plastics along rivers, we propose a new ecosystem service of plastic entrapment by global plants. Although research started recently to study vegetation trapping plastics, little is known about the global patterns of plastic retention and remobilization by vegetation through different habitats. Given those gaps, we synthesize global data on plastic entrapment in plants providing a conceptual model to describe processes for plastic retention by vegetation. Our results demonstrate how vegetation has a pivotal role in entrapping plastics across spatial and temporal scales, finding the higher density of plastics on plants rather than in the adjacent water area. Furthermore, we proposed a conceptual model (i.e., Plant Plastic Pathway) of plants entrapping plastics, highlighting spatial and temporal scales of plastic retention and release processes in different habitats. Thus, we anticipate our conceptual model to be a starting point for more sophisticated future studies, putting effort into looking at plastic-vegetation dynamics. Our conceptual model may have a crucial effect if applied to plastic hotspot area detection with clean-up and mitigation actions in riverine ecosystems.
Gallitelli, L., Scalici, M. (2024). Conceptual model of global plants entrapping plastics. ENVIRONMENTAL REVIEWS, 00, 1-15 [10.1139/er-2023-0141].
Conceptual model of global plants entrapping plastics
Luca Gallitelli
;Massimiliano Scalici
2024-01-01
Abstract
Aquatic plants, seagrasses, macrophytes, mangroves, and riparian vegetation are responsible for some of the most important ecosystem services provided on the Earth. Given their role in trapping plastics along rivers, we propose a new ecosystem service of plastic entrapment by global plants. Although research started recently to study vegetation trapping plastics, little is known about the global patterns of plastic retention and remobilization by vegetation through different habitats. Given those gaps, we synthesize global data on plastic entrapment in plants providing a conceptual model to describe processes for plastic retention by vegetation. Our results demonstrate how vegetation has a pivotal role in entrapping plastics across spatial and temporal scales, finding the higher density of plastics on plants rather than in the adjacent water area. Furthermore, we proposed a conceptual model (i.e., Plant Plastic Pathway) of plants entrapping plastics, highlighting spatial and temporal scales of plastic retention and release processes in different habitats. Thus, we anticipate our conceptual model to be a starting point for more sophisticated future studies, putting effort into looking at plastic-vegetation dynamics. Our conceptual model may have a crucial effect if applied to plastic hotspot area detection with clean-up and mitigation actions in riverine ecosystems.File | Dimensione | Formato | |
---|---|---|---|
er-2023-0141_last.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.