Pavement adhesion plays a crucial role in driving safety, while traditional test methods exhibit some limitations. To improve the efficiency and accuracy of asphalt pavement texture characterization and adhesion assessments, this paper uses three-dimensional (3D) laser technology to detect the continuous point cloud data of road surface and reconstruct the 3D topography of pavement texture. On this basis, a volume parameter Volume of peak materials (Vmp) is innovatively proposed to comprehensively characterize the 3D spatial characteristics of road surface texture. The correlation analysis between the proposed Vmp and the traditional adhesion evaluation index Transversal Adhesion Coefficient (CAT) is conducted, and then refined graded adhesion prediction models based on the proposed Vmp are proposed. Results show that the proposed volume parameter Vmp can reliably and accurately characterize the asphalt pavement texture by considering more structural properties of the road surface texture. According to the research findings of this paper, it is feasible to achieve rapid and correct assessment of asphalt pavement adhesion using 3D laser detection technology by comprehensively considering the 3D characteristics of the road surface texture.
Liang, H., Pagano, R.G., Oddone, S., Cong, L., De Blasiis, M.R. (2024). Analysis of Road Surface Texture for Asphalt Pavement Adhesion Assessment Using 3D Laser Technology. REMOTE SENSING, 16(11) [10.3390/rs16111943].
Analysis of Road Surface Texture for Asphalt Pavement Adhesion Assessment Using 3D Laser Technology
Pagano, Rosa Giovanna;De Blasiis, Maria Rosaria
2024-01-01
Abstract
Pavement adhesion plays a crucial role in driving safety, while traditional test methods exhibit some limitations. To improve the efficiency and accuracy of asphalt pavement texture characterization and adhesion assessments, this paper uses three-dimensional (3D) laser technology to detect the continuous point cloud data of road surface and reconstruct the 3D topography of pavement texture. On this basis, a volume parameter Volume of peak materials (Vmp) is innovatively proposed to comprehensively characterize the 3D spatial characteristics of road surface texture. The correlation analysis between the proposed Vmp and the traditional adhesion evaluation index Transversal Adhesion Coefficient (CAT) is conducted, and then refined graded adhesion prediction models based on the proposed Vmp are proposed. Results show that the proposed volume parameter Vmp can reliably and accurately characterize the asphalt pavement texture by considering more structural properties of the road surface texture. According to the research findings of this paper, it is feasible to achieve rapid and correct assessment of asphalt pavement adhesion using 3D laser detection technology by comprehensively considering the 3D characteristics of the road surface texture.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.