This research explores the opportunities for the application of network analytic techniques to prevent money laundering. We worked on real world data by analyzing the central database of a factoring company, mainly operating in Italy, over a period of 19 months. This database contained the financial operations linked to the factoring business, together with other useful information about the company clients. We propose a new approach to sort and map relational data and present predictive models – based on network metrics – to assess risk profiles of clients involved in the factoring business. We find that risk profiles can be predicted by using social network metrics. In our dataset, the most dangerous social actors deal with bigger or more frequent financial operations; they are more peripheral in the transactions network; they mediate transactions across different economic sectors and operate in riskier countries or Italian regions. Finally, to spot potential clusters of criminals, we propose a visual analysis of the tacit links existing among different companies who share the same owner or representative. Our findings show the importance of using a network-based approach when looking for suspicious financial operations and potential criminals.
Fronzetti Colladon, A., Remondi, E. (2017). Using social network analysis to prevent money laundering. EXPERT SYSTEMS WITH APPLICATIONS, 67, 49-58 [10.1016/j.eswa.2016.09.029].
Using social network analysis to prevent money laundering
Fronzetti Colladon, Andrea;
2017-01-01
Abstract
This research explores the opportunities for the application of network analytic techniques to prevent money laundering. We worked on real world data by analyzing the central database of a factoring company, mainly operating in Italy, over a period of 19 months. This database contained the financial operations linked to the factoring business, together with other useful information about the company clients. We propose a new approach to sort and map relational data and present predictive models – based on network metrics – to assess risk profiles of clients involved in the factoring business. We find that risk profiles can be predicted by using social network metrics. In our dataset, the most dangerous social actors deal with bigger or more frequent financial operations; they are more peripheral in the transactions network; they mediate transactions across different economic sectors and operate in riskier countries or Italian regions. Finally, to spot potential clusters of criminals, we propose a visual analysis of the tacit links existing among different companies who share the same owner or representative. Our findings show the importance of using a network-based approach when looking for suspicious financial operations and potential criminals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.