Post deposition thermal annealing of amorphous coatings improves optical properties of dielectric mirrors. However, excessive temperatures cause crystallization, resulting in a degradation of mechanical and optical properties. Therefore, annealing is limited to temperatures 'below' the crystallization threshold. The threshold is determined by x-ray diffraction (XRD) measurement which requires a significant amount of crystallized material for detection, yet it has been shown that a population of crystallites may exist in otherwise amorphous coatings below the threshold temperature. In this study XRD measurements show crystallites that grow during annealing within amorphous oxide coatings to a limited and predictable size predicated on the difference in density between the crystal and the surrounding amorphous phase and the average material's Young's modulus. These crystallites may be the point-like, extremely weak scatterers revealed in the LIGO test masses when imaged off-axis.

Linker, S., Ausbeck, C., Desalvo, R., Granata, V., Larsen, B., Lebohec, T., et al. (2024). Crystallite growth limits in amorphous oxides. CLASSICAL AND QUANTUM GRAVITY, 41, 1-16 [10.1088/1361-6382/ad14b7].

Crystallite growth limits in amorphous oxides

Granata V.;
2024-01-01

Abstract

Post deposition thermal annealing of amorphous coatings improves optical properties of dielectric mirrors. However, excessive temperatures cause crystallization, resulting in a degradation of mechanical and optical properties. Therefore, annealing is limited to temperatures 'below' the crystallization threshold. The threshold is determined by x-ray diffraction (XRD) measurement which requires a significant amount of crystallized material for detection, yet it has been shown that a population of crystallites may exist in otherwise amorphous coatings below the threshold temperature. In this study XRD measurements show crystallites that grow during annealing within amorphous oxide coatings to a limited and predictable size predicated on the difference in density between the crystal and the surrounding amorphous phase and the average material's Young's modulus. These crystallites may be the point-like, extremely weak scatterers revealed in the LIGO test masses when imaged off-axis.
2024
Linker, S., Ausbeck, C., Desalvo, R., Granata, V., Larsen, B., Lebohec, T., et al. (2024). Crystallite growth limits in amorphous oxides. CLASSICAL AND QUANTUM GRAVITY, 41, 1-16 [10.1088/1361-6382/ad14b7].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/491458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact