Accurate mapping of mechanical properties across extensive areas in heterogeneous materials is essential for understanding phase-specific contributions to strength and hardness. High-speed nanoindentation mapping enables their x-y spatial mapping through a fast and dense grid of indents. However, accurate measurements are complicated by pile-up, the plastic displacement of material laterally and vertically around an indent, causing hardness and modulus overestimation, especially in materials with varying phase compliance. Traditional correction methods rely on time-consuming, localized Atomic Force Microscopy measurements, which are impractical for large-area mapping. This study presents a fast and semi-automated solution using High-speed nanoindentation mapping-induced surface roughness changes Sa, quantifiable by optical profilometry, with machine learning to correct pile-up over extensive areas selectively. By correlating these roughness changes with the Atomic Force Microscopy-measured pile-up height, we derived universal calibration functions for a wide range of bulk materials and thin films, validated through Finite Element Modeling. Applied to a benchmark cobalt-based, chromium-tungsten alloy, the method uses unsupervised clustering to identify piling-up phases in the cobalt matrix while excluding the hard carbides. This approach reduced the hardness and modulus errors by up to 7 %, uniquely enabling accurate phase-specific property mapping in high-speed nanoindentation, advancing the mechanical microscopy frontier.

Rossi, E., Duranti, D., Rashid, S., Zitek, M., Rostislav, D., Sebastiani, M. (2024). A high-throughput framework for pile-up correction in high-speed nanoindentation maps. MATERIALS & DESIGN, 251 [10.1016/j.matdes.2025.113708].

A high-throughput framework for pile-up correction in high-speed nanoindentation maps

Rossi, Edoardo
Investigation
;
Duranti, Daniele
Data Curation
;
Rashid, Saqib;Daniel, Rostislav;Sebastiani, Marco
2024-01-01

Abstract

Accurate mapping of mechanical properties across extensive areas in heterogeneous materials is essential for understanding phase-specific contributions to strength and hardness. High-speed nanoindentation mapping enables their x-y spatial mapping through a fast and dense grid of indents. However, accurate measurements are complicated by pile-up, the plastic displacement of material laterally and vertically around an indent, causing hardness and modulus overestimation, especially in materials with varying phase compliance. Traditional correction methods rely on time-consuming, localized Atomic Force Microscopy measurements, which are impractical for large-area mapping. This study presents a fast and semi-automated solution using High-speed nanoindentation mapping-induced surface roughness changes Sa, quantifiable by optical profilometry, with machine learning to correct pile-up over extensive areas selectively. By correlating these roughness changes with the Atomic Force Microscopy-measured pile-up height, we derived universal calibration functions for a wide range of bulk materials and thin films, validated through Finite Element Modeling. Applied to a benchmark cobalt-based, chromium-tungsten alloy, the method uses unsupervised clustering to identify piling-up phases in the cobalt matrix while excluding the hard carbides. This approach reduced the hardness and modulus errors by up to 7 %, uniquely enabling accurate phase-specific property mapping in high-speed nanoindentation, advancing the mechanical microscopy frontier.
2024
Rossi, E., Duranti, D., Rashid, S., Zitek, M., Rostislav, D., Sebastiani, M. (2024). A high-throughput framework for pile-up correction in high-speed nanoindentation maps. MATERIALS & DESIGN, 251 [10.1016/j.matdes.2025.113708].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/504736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact