We consider the critical points of Steklov eigenfunctions on a compact, smooth n-dimensional Riemannian manifold M with boundary ∂M. For generic metrics on M we establish an identity which relates the sum of the indexes of a Steklov eigenfunction, the sum of the indexes of its restriction to ∂M, and the Euler characteristic of M. In dimension 2 this identity gives a precise count of the interior critical points of a Steklov eigenfunction in terms of the Euler characteristic of M and of the number of sign changes of u on ∂M. In the case of the second Steklov eigenfunction on a genus 0 surface, the identity holds for any metric. As a by-product of the main result, we show that for generic metrics on M Steklov eigenfunctions are Morse functions in M.

Battaglia, L., Pistoia, A., Provenzano, L. (2025). On the critical points of Steklov eigenfunctions. ANNALI DI MATEMATICA PURA ED APPLICATA [10.1007/s10231-025-01551-6].

On the critical points of Steklov eigenfunctions

Battaglia L.;
2025-01-01

Abstract

We consider the critical points of Steklov eigenfunctions on a compact, smooth n-dimensional Riemannian manifold M with boundary ∂M. For generic metrics on M we establish an identity which relates the sum of the indexes of a Steklov eigenfunction, the sum of the indexes of its restriction to ∂M, and the Euler characteristic of M. In dimension 2 this identity gives a precise count of the interior critical points of a Steklov eigenfunction in terms of the Euler characteristic of M and of the number of sign changes of u on ∂M. In the case of the second Steklov eigenfunction on a genus 0 surface, the identity holds for any metric. As a by-product of the main result, we show that for generic metrics on M Steklov eigenfunctions are Morse functions in M.
2025
Battaglia, L., Pistoia, A., Provenzano, L. (2025). On the critical points of Steklov eigenfunctions. ANNALI DI MATEMATICA PURA ED APPLICATA [10.1007/s10231-025-01551-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/512418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact