Additive manufacturing is one of the foundational pillars of Industry 4.0, which is rooted in the integration of intelligent digital technologies, manufacturing, and industrial processes. Machine learning techniques are resources used to support Design for Additive Manufacturing, particularly in design phases and process analysis. Neural Networks are suited to manage complex and non-linear datasets. The article proposes a methodology for the time and cost assessment of the Laser-Powder Bed Fusion 3D printing process using a Neural Network-based approach. The methodology analyzes the main geometrical features of STL files to train Neural Network Machine Learning models. The methodology has been tested on a preliminary dataset that includes a set of parametric CAD models and their corresponding Additive Manufacturing simulations. The trained models achieve an R2 value greater than 0.97. A web-service platform has been implemented to provide a valuable tool for users, transforming a research-grade model into a production-grade online endpoint.
Trovato, M., Amicarelli, M., Prist, M., Cicconi, P. (2025). A Neural Network-Based Approach to Estimate Printing Time and Cost in L-PBF Projects. MACHINES, 13(7) [10.3390/machines13070550].
A Neural Network-Based Approach to Estimate Printing Time and Cost in L-PBF Projects
Trovato M.;Amicarelli M.;Cicconi P.
2025-01-01
Abstract
Additive manufacturing is one of the foundational pillars of Industry 4.0, which is rooted in the integration of intelligent digital technologies, manufacturing, and industrial processes. Machine learning techniques are resources used to support Design for Additive Manufacturing, particularly in design phases and process analysis. Neural Networks are suited to manage complex and non-linear datasets. The article proposes a methodology for the time and cost assessment of the Laser-Powder Bed Fusion 3D printing process using a Neural Network-based approach. The methodology analyzes the main geometrical features of STL files to train Neural Network Machine Learning models. The methodology has been tested on a preliminary dataset that includes a set of parametric CAD models and their corresponding Additive Manufacturing simulations. The trained models achieve an R2 value greater than 0.97. A web-service platform has been implemented to provide a valuable tool for users, transforming a research-grade model into a production-grade online endpoint.| File | Dimensione | Formato | |
|---|---|---|---|
|
machines-13-00550.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.51 MB
Formato
Adobe PDF
|
3.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


