Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial. We show that these enigmatic mineralizations consist of nanosized, poorly crystalline, phosphorus-rich Mn-Fe compounds produced through microbial mediation. They preserve carbonaceous material together with morphological, chemical, and mineralogical biosignatures, including high Mn oxidation state (3.9 ± 0.15), cell envelopes, extracellular polymeric substances (EPS), cell-EPS partitioning of redox-sensitive Mn and Fe, cluster-assembled microbial cells, microbialite-like and branching structures, and channel networks for nutrient transport. Geochemical signatures indicate precipitation under suboxic to anoxic, non-sulfidic (post-oxic) conditions from mixed seawater-hydrothermal fluids, with exposure on the seafloor prior to burial. The fusiform architecture of these self-organized microbial populations suggests shaping by nutrient-rich bottom currents associated with venting activity. This study provides a detailed glimpse into initial benthic colonization of the nascent Western Mediterranean Basin and establishes Tubotomaculum as a model for investigating biomineralization and microbial adaptation in extreme environments, with implications for the search for life beyond Earth.
Bernardini, S., Abbassi, A., Cipollari, P., Ventura, G.D., Saiz‐jimenez, C., Mugnaioli, E., et al. (2025). The Tubotomaculum Enigma and the Rise of Benthic Life During the Opening of the Western Mediterranean Basin. GEOBIOLOGY, 23(5) [10.1111/gbi.70031].
The Tubotomaculum Enigma and the Rise of Benthic Life During the Opening of the Western Mediterranean Basin
Bernardini, Simone
Writing – Original Draft Preparation
;Abbassi, AnasWriting – Review & Editing
;Cipollari, PaolaWriting – Review & Editing
;Ventura, Giancarlo DellaWriting – Review & Editing
;Sodo, ArmidaMethodology
;Bellatreccia, FabioMethodology
;Cosentino, DomenicoWriting – Review & Editing
2025-01-01
Abstract
Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial. We show that these enigmatic mineralizations consist of nanosized, poorly crystalline, phosphorus-rich Mn-Fe compounds produced through microbial mediation. They preserve carbonaceous material together with morphological, chemical, and mineralogical biosignatures, including high Mn oxidation state (3.9 ± 0.15), cell envelopes, extracellular polymeric substances (EPS), cell-EPS partitioning of redox-sensitive Mn and Fe, cluster-assembled microbial cells, microbialite-like and branching structures, and channel networks for nutrient transport. Geochemical signatures indicate precipitation under suboxic to anoxic, non-sulfidic (post-oxic) conditions from mixed seawater-hydrothermal fluids, with exposure on the seafloor prior to burial. The fusiform architecture of these self-organized microbial populations suggests shaping by nutrient-rich bottom currents associated with venting activity. This study provides a detailed glimpse into initial benthic colonization of the nascent Western Mediterranean Basin and establishes Tubotomaculum as a model for investigating biomineralization and microbial adaptation in extreme environments, with implications for the search for life beyond Earth.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


