We present some integrable time-dependent systems of classical dynamics, and we apply the results to the equation $\ddot x + f (t) x = 0$, with $f$ a positive nondecreasing differentiable function; some of the results are extended to the nonlinear case. Moreover we investigate the conditions for the solutions to be bounded and we study their asymptotic behaviour.

Bartuccelli, M., Gentile, G. (2003). On a class of integrable time-dependent dynamical systems. PHYSICS LETTERS A, 307(5-6), 274-280 [10.1016/S0375-9601(02)01731-0].

On a class of integrable time-dependent dynamical systems

GENTILE, Guido
2003-01-01

Abstract

We present some integrable time-dependent systems of classical dynamics, and we apply the results to the equation $\ddot x + f (t) x = 0$, with $f$ a positive nondecreasing differentiable function; some of the results are extended to the nonlinear case. Moreover we investigate the conditions for the solutions to be bounded and we study their asymptotic behaviour.
2003
Bartuccelli, M., Gentile, G. (2003). On a class of integrable time-dependent dynamical systems. PHYSICS LETTERS A, 307(5-6), 274-280 [10.1016/S0375-9601(02)01731-0].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/141287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact