We study the algebraic rank of a divisor on a graph, an invariant defined using divisors on algebraic curves dual to the graph. We prove it satisfies the Riemann-Roch formula, a specialization property, and the Clifford inequality. We prove that it is at most equal to the (usual) combinatorial rank, and that equality holds in many cases, though not in general.

Caporaso, L., Len, Y., MASCARENHAS MELO, A.M. (2015). Algebraic and combinatorial rank of divisors on finite graphs. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 48(104), 227-257.

Algebraic and combinatorial rank of divisors on finite graphs

CAPORASO, Lucia;MASCARENHAS MELO, ANA MARGARIDA
2015-01-01

Abstract

We study the algebraic rank of a divisor on a graph, an invariant defined using divisors on algebraic curves dual to the graph. We prove it satisfies the Riemann-Roch formula, a specialization property, and the Clifford inequality. We prove that it is at most equal to the (usual) combinatorial rank, and that equality holds in many cases, though not in general.
2015
Caporaso, L., Len, Y., MASCARENHAS MELO, A.M. (2015). Algebraic and combinatorial rank of divisors on finite graphs. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 48(104), 227-257.
File in questo prodotto:
File Dimensione Formato  
LMC-JMPA.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 631.92 kB
Formato Adobe PDF
631.92 kB Adobe PDF Visualizza/Apri
LMC-JMPA.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 631.92 kB
Formato Adobe PDF
631.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/141861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact