We study the algebraic rank of a divisor on a graph, an invariant defined using divisors on algebraic curves dual to the graph. We prove it satisfies the Riemann-Roch formula, a specialization property, and the Clifford inequality. We prove that it is at most equal to the (usual) combinatorial rank, and that equality holds in many cases, though not in general.
Caporaso, L., Len, Y., MASCARENHAS MELO, A.M. (2015). Algebraic and combinatorial rank of divisors on finite graphs. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 48(104), 227-257.
Algebraic and combinatorial rank of divisors on finite graphs
CAPORASO, Lucia;MASCARENHAS MELO, ANA MARGARIDA
2015-01-01
Abstract
We study the algebraic rank of a divisor on a graph, an invariant defined using divisors on algebraic curves dual to the graph. We prove it satisfies the Riemann-Roch formula, a specialization property, and the Clifford inequality. We prove that it is at most equal to the (usual) combinatorial rank, and that equality holds in many cases, though not in general.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LMC-JMPA.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
631.92 kB
Formato
Adobe PDF
|
631.92 kB | Adobe PDF | Visualizza/Apri |
LMC-JMPA.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
631.92 kB
Formato
Adobe PDF
|
631.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.