For a smooth, compact Riemannian manifold (M,g) of dimension N \ge3, we are interested in the critical equation $$\Delta_g u+[N-2/ 4(N-1)S_g +\epsilon h] u=u^{N+2/N-2}$$ in M, u>0 in M, where \Delta_g is the Laplace--Beltrami operator, S_g is the Scalar curvature of (M,g), h\in C^{0,\alpha}(M), and \epsilon is a small parameter.

Esposito, P., Pistoia, A., Vétois, J. (2013). Blow-up solutions for linear perturbations of the Yamabe equation. In Concentration Analysis and Applications to PDE (pp.29-47). BASEL : Birkhauser.

Blow-up solutions for linear perturbations of the Yamabe equation

ESPOSITO, PIERPAOLO;
2013-01-01

Abstract

For a smooth, compact Riemannian manifold (M,g) of dimension N \ge3, we are interested in the critical equation $$\Delta_g u+[N-2/ 4(N-1)S_g +\epsilon h] u=u^{N+2/N-2}$$ in M, u>0 in M, where \Delta_g is the Laplace--Beltrami operator, S_g is the Scalar curvature of (M,g), h\in C^{0,\alpha}(M), and \epsilon is a small parameter.
2013
9783034803724
Esposito, P., Pistoia, A., Vétois, J. (2013). Blow-up solutions for linear perturbations of the Yamabe equation. In Concentration Analysis and Applications to PDE (pp.29-47). BASEL : Birkhauser.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/180539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact