We have studied the AGN radio emission from the largest existing compilation of hard X-ray selected samples, all observed in the 1.4 GHz band. A total of more than 1600 AGN have been used. For the first time, it was possible to almost completely measure the probability distribution function of the ratio between the radio and the X-ray luminosity RX , which has been function-ally fitted as dependent from the X-ray luminosity and redshift. These measures have allowed us to estimate the AGN kinetic luminosity function and its evo-lution. It results that, in agreement with previous estimates, the efficiency kin in converting the accreted mass energy into kinetic power (LK = kin mc2 ) is on average kin ˜5 × 10-3 . ˙ The derived value and evolution of the kinetic energy density is in qualitative agreement with some of the last generation galaxy evolution models, where radio mode AGN feedback is invoked to quench the star formation in galaxies and slow down the cooling flows in galaxy clusters.
LA FRANCA, F., Melini, G., Fiore, F. (2010). AGN Feedback: Radio-Loudness Distribution and the Kinetic Luminosity function. In 38th COSPAR Scientific Assembly.
AGN Feedback: Radio-Loudness Distribution and the Kinetic Luminosity function
LA FRANCA, Fabio;
2010-01-01
Abstract
We have studied the AGN radio emission from the largest existing compilation of hard X-ray selected samples, all observed in the 1.4 GHz band. A total of more than 1600 AGN have been used. For the first time, it was possible to almost completely measure the probability distribution function of the ratio between the radio and the X-ray luminosity RX , which has been function-ally fitted as dependent from the X-ray luminosity and redshift. These measures have allowed us to estimate the AGN kinetic luminosity function and its evo-lution. It results that, in agreement with previous estimates, the efficiency kin in converting the accreted mass energy into kinetic power (LK = kin mc2 ) is on average kin ˜5 × 10-3 . ˙ The derived value and evolution of the kinetic energy density is in qualitative agreement with some of the last generation galaxy evolution models, where radio mode AGN feedback is invoked to quench the star formation in galaxies and slow down the cooling flows in galaxy clusters.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.