Revising Nekhoroshev’s geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev’s theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be (Formula presented.) ((Formula presented.) ’s being Nekhoroshev’s steepness indices and (Formula presented.) the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.
Guzzo, M., Chierchia, L., Benettin, G. (2016). The Steep Nekhoroshev’s Theorem. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 342(2), 569-601 [10.1007/s00220-015-2555-x].
The Steep Nekhoroshev’s Theorem
GUZZO, MASSIMILIANO;CHIERCHIA, Luigi;
2016-01-01
Abstract
Revising Nekhoroshev’s geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev’s theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be (Formula presented.) ((Formula presented.) ’s being Nekhoroshev’s steepness indices and (Formula presented.) the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.File | Dimensione | Formato | |
---|---|---|---|
CMP2016.pdf
accesso aperto
Tipologia:
Documento in Post-print
Dimensione
738.74 kB
Formato
Adobe PDF
|
738.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.