Revising Nekhoroshev’s geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev’s theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be (Formula presented.) ((Formula presented.) ’s being Nekhoroshev’s steepness indices and (Formula presented.) the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.

Guzzo, M., Chierchia, L., Benettin, G. (2016). The Steep Nekhoroshev’s Theorem. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 342(2), 569-601 [10.1007/s00220-015-2555-x].

The Steep Nekhoroshev’s Theorem

GUZZO, MASSIMILIANO;CHIERCHIA, Luigi;
2016-01-01

Abstract

Revising Nekhoroshev’s geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev’s theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be (Formula presented.) ((Formula presented.) ’s being Nekhoroshev’s steepness indices and (Formula presented.) the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.
2016
Guzzo, M., Chierchia, L., Benettin, G. (2016). The Steep Nekhoroshev’s Theorem. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 342(2), 569-601 [10.1007/s00220-015-2555-x].
File in questo prodotto:
File Dimensione Formato  
CMP2016.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 738.74 kB
Formato Adobe PDF
738.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/301858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact