We study the quintic nonlinear Schrödinger equation on a two-dimensional torus and exhibit orbits whose Sobolev norms grow with time. The main point is to reduce to a sufficiently simple toy model, similar in many ways to the one discussed by Colliander et al. for the case of the cubic NLS. This requires an accurate combinatorial analysis.

Haus, E., & Procesi, M. (2015). Growth of sobolev norms for the quintic NLS on T2. ANALYSIS & PDE, 8(4), 883-922 [10.2140/apde.2015.8.883].

Growth of sobolev norms for the quintic NLS on T2

Haus, Emanuele;PROCESI, MICHELA
2015

Abstract

We study the quintic nonlinear Schrödinger equation on a two-dimensional torus and exhibit orbits whose Sobolev norms grow with time. The main point is to reduce to a sufficiently simple toy model, similar in many ways to the one discussed by Colliander et al. for the case of the cubic NLS. This requires an accurate combinatorial analysis.
Haus, E., & Procesi, M. (2015). Growth of sobolev norms for the quintic NLS on T2. ANALYSIS & PDE, 8(4), 883-922 [10.2140/apde.2015.8.883].
File in questo prodotto:
File Dimensione Formato  
quintic5.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Dimensione 507.73 kB
Formato Adobe PDF
507.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/301864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact