We study the quintic nonlinear Schrödinger equation on a two-dimensional torus and exhibit orbits whose Sobolev norms grow with time. The main point is to reduce to a sufficiently simple toy model, similar in many ways to the one discussed by Colliander et al. for the case of the cubic NLS. This requires an accurate combinatorial analysis.
Haus, E., & Procesi, M. (2015). Growth of sobolev norms for the quintic NLS on T2. ANALYSIS & PDE, 8(4), 883-922.
Titolo: | Growth of sobolev norms for the quintic NLS on T2 |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Citazione: | Haus, E., & Procesi, M. (2015). Growth of sobolev norms for the quintic NLS on T2. ANALYSIS & PDE, 8(4), 883-922. |
Handle: | http://hdl.handle.net/11590/301864 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.