We consider a system of rotators subject to a small quasi periodic forcing. We require the forcing to be analytic and satisfy a time reversibility property and we assume its frequency vector to be Bryuno. Then we prove that, without imposing any non-degeneracy condition on the forcing, there exists at least one quasi-periodic solution with the same frequency vector as the forcing. The result can be interpreted as a theorem of persistence of lower-dimensional tori of arbitrary codimension in degenerate cases.

Corsi, L., Gentile, G. (2017). Resonant tori of arbitrary codimension for quasi-periodically forced systems. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 24(1) [10.1007/s00030-016-0425-7].

Resonant tori of arbitrary codimension for quasi-periodically forced systems

Corsi, Livia;GENTILE, Guido
2017-01-01

Abstract

We consider a system of rotators subject to a small quasi periodic forcing. We require the forcing to be analytic and satisfy a time reversibility property and we assume its frequency vector to be Bryuno. Then we prove that, without imposing any non-degeneracy condition on the forcing, there exists at least one quasi-periodic solution with the same frequency vector as the forcing. The result can be interpreted as a theorem of persistence of lower-dimensional tori of arbitrary codimension in degenerate cases.
2017
Corsi, L., Gentile, G. (2017). Resonant tori of arbitrary codimension for quasi-periodically forced systems. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 24(1) [10.1007/s00030-016-0425-7].
File in questo prodotto:
File Dimensione Formato  
cg4-final.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 260.07 kB
Formato Adobe PDF
260.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/313991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact