We consider the nonlinear Schrödinger equation of degree five on the circle T= R/ 2 Ï. We prove the existence of quasi-periodic solutions with four frequencies which bifurcate from âresonantâ solutions [studied in Grébert and Thomann (Ann Inst Henri Poincaré Anal Non Linéaire 29(3):455â477, 2012)] of the system obtained by truncating the Hamiltonian after one step of Birkhoff normal form, exhibiting recurrent exchange of energy between some Fourier modes. The existence of these quasi-periodic solutions is a purely nonlinear effect.
Haus, E., & Procesi, M. (2017). KAM for Beating Solutions of the Quintic NLS. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 354(3), 1101-1132 [10.1007/s00220-017-2925-7].
Titolo: | KAM for Beating Solutions of the Quintic NLS | |
Autori: | ||
Data di pubblicazione: | 2017 | |
Rivista: | ||
Citazione: | Haus, E., & Procesi, M. (2017). KAM for Beating Solutions of the Quintic NLS. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 354(3), 1101-1132 [10.1007/s00220-017-2925-7]. | |
Handle: | http://hdl.handle.net/11590/327680 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Note | Licenza | |
---|---|---|---|---|---|
HausProcesi.pdf | articolo principale | Documento in Pre-print | Nessuna Nota | Open Access Visualizza/Apri |