The present paper is devoted to the construction of small reducible quasi-periodic solutions for the completely resonant NLS equations on a d-dimensional torus Td. The main point is to prove that the normal form is reducible, block diagonal and satisifies the second Melnikov conditon block wise. From this we deduce the result by a KAM algorithm.
Procesi, M., Procesi, C. (2016). Reducible quasi-periodic solutions for the non linear Schrödinger equation. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 9(2), 189-236 [10.1007/s40574-016-0066-0].
Reducible quasi-periodic solutions for the non linear Schrödinger equation
Procesi, M.
;Procesi, Claudio
2016-01-01
Abstract
The present paper is devoted to the construction of small reducible quasi-periodic solutions for the completely resonant NLS equations on a d-dimensional torus Td. The main point is to prove that the normal form is reducible, block diagonal and satisifies the second Melnikov conditon block wise. From this we deduce the result by a KAM algorithm.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
NLS_PP_Bumi.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Documento in Post-print
Dimensione
712.42 kB
Formato
Adobe PDF
|
712.42 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.