The present paper is devoted to the construction of small reducible quasi-periodic solutions for the completely resonant NLS equations on a d-dimensional torus Td. The main point is to prove that the normal form is reducible, block diagonal and satisifies the second Melnikov conditon block wise. From this we deduce the result by a KAM algorithm.

Procesi, M., Procesi, C. (2016). Reducible quasi-periodic solutions for the non linear Schrödinger equation. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 9(2), 189-236 [10.1007/s40574-016-0066-0].

Reducible quasi-periodic solutions for the non linear Schrödinger equation

Procesi, M.
;
Procesi, Claudio
2016-01-01

Abstract

The present paper is devoted to the construction of small reducible quasi-periodic solutions for the completely resonant NLS equations on a d-dimensional torus Td. The main point is to prove that the normal form is reducible, block diagonal and satisifies the second Melnikov conditon block wise. From this we deduce the result by a KAM algorithm.
2016
Procesi, M., Procesi, C. (2016). Reducible quasi-periodic solutions for the non linear Schrödinger equation. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 9(2), 189-236 [10.1007/s40574-016-0066-0].
File in questo prodotto:
File Dimensione Formato  
NLS_PP_Bumi.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Post-print
Dimensione 712.42 kB
Formato Adobe PDF
712.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/327682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact