We consider the Toda system on a compact surface (Ï, g)-δu1=2Ï1(h1eu1â«Ïh1eu1dVg-1)-Ï2(h2eu2â«Ïh2eu2dVg-1)-4Ïâj=1Jα1j(δpj-1),-δu2=2Ï2(h2eu2â«Ïh2eu2dVg-1)-Ï1(h1eu1â«Ïh1eu1dVg-1)-4Ïâj=1Jα2j(δpj-1), where hiare smooth positive functions, Ïiare positive real parameters, pjare given points on Ï and αijare numbers greater than -1. We give existence and multiplicity results, using variational and Morse-theoretical methods. It is the first existence result when some of the αij's are allowed to be negative.
Battaglia, L. (2015). Existence and multiplicity result for the singular Toda system. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 424(1), 49-85 [10.1016/j.jmaa.2014.10.081].
Existence and multiplicity result for the singular Toda system
Battaglia, Luca
2015-01-01
Abstract
We consider the Toda system on a compact surface (Ï, g)-δu1=2Ï1(h1eu1â«Ïh1eu1dVg-1)-Ï2(h2eu2â«Ïh2eu2dVg-1)-4Ïâj=1Jα1j(δpj-1),-δu2=2Ï2(h2eu2â«Ïh2eu2dVg-1)-Ï1(h1eu1â«Ïh1eu1dVg-1)-4Ïâj=1Jα2j(δpj-1), where hiare smooth positive functions, Ïiare positive real parameters, pjare given points on Ï and αijare numbers greater than -1. We give existence and multiplicity results, using variational and Morse-theoretical methods. It is the first existence result when some of the αij's are allowed to be negative.File | Dimensione | Formato | |
---|---|---|---|
1404.1970.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Dimensione
614.26 kB
Formato
Adobe PDF
|
614.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.