An increasing number of product pages are available from thousands of web sources, each page associated with a product, containing its attributes and one or more product identifiers. The sources provide overlapping information about the products, using diverse schemas, making web-scale integration extremely challenging. In this paper, we take advantage of the opportunity that sources publish product identifiers to perform big data linkage across sources at the beginning of the data integration pipeline, before schema alignment. To realize this opportunity, several challenges need to be addressed: identifiers need to be discovered on product pages, made difficult by the diversity of identifiers; the main product identifier on the page needs to be identified, made difficult by the many related products presented on the page; and identifiers across pages need to be resolved, made difficult by the ambiguity between identifiers across product categories. We present our RaF (Redundancy as Friend) solution to the problem of big data linkage for product specification pages, which takes advantage of the redundancy of identifiers at a global level, and the homogeneity of structure and semantics at the local source level, to effectively and efficiently link millions of pages of head and tail products across thousands of head and tail sources. We perform a thorough empirical evaluation of our RaF approach using the publicly available Dexter dataset consisting of 1.9M product pages from 7.1k sources of 3.5k websites, and demonstrate its effectiveness in practice.

Qiu, D., Barbosa, L., Crescenzi, V., Merialdo, P., Srivastava, D. (2018). Big data linkage for product specification pages. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp.67-81). Association for Computing Machinery [10.1145/3183713.3183757].

Big data linkage for product specification pages

Qiu, Disheng;Crescenzi, Valter;Merialdo, Paolo;
2018-01-01

Abstract

An increasing number of product pages are available from thousands of web sources, each page associated with a product, containing its attributes and one or more product identifiers. The sources provide overlapping information about the products, using diverse schemas, making web-scale integration extremely challenging. In this paper, we take advantage of the opportunity that sources publish product identifiers to perform big data linkage across sources at the beginning of the data integration pipeline, before schema alignment. To realize this opportunity, several challenges need to be addressed: identifiers need to be discovered on product pages, made difficult by the diversity of identifiers; the main product identifier on the page needs to be identified, made difficult by the many related products presented on the page; and identifiers across pages need to be resolved, made difficult by the ambiguity between identifiers across product categories. We present our RaF (Redundancy as Friend) solution to the problem of big data linkage for product specification pages, which takes advantage of the redundancy of identifiers at a global level, and the homogeneity of structure and semantics at the local source level, to effectively and efficiently link millions of pages of head and tail products across thousands of head and tail sources. We perform a thorough empirical evaluation of our RaF approach using the publicly available Dexter dataset consisting of 1.9M product pages from 7.1k sources of 3.5k websites, and demonstrate its effectiveness in practice.
2018
9781450317436
Qiu, D., Barbosa, L., Crescenzi, V., Merialdo, P., Srivastava, D. (2018). Big data linkage for product specification pages. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp.67-81). Association for Computing Machinery [10.1145/3183713.3183757].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/338653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact