We present the recent result concerning the existence of Cantor families of small amplitude, linearly stable, time quasi-periodic standing water wave solutions – i.e. periodic and even in the space variable x – of a bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure.
Baldi, P., Berti, M., Haus, E., Montalto, R. (2018). KAM for gravity water waves in finite depth. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 29(2), 215-236 [10.4171/RLM/802].
KAM for gravity water waves in finite depth
Pietro Baldi;Massimiliano Berti;Emanuele Haus;Riccardo Montalto
2018-01-01
Abstract
We present the recent result concerning the existence of Cantor families of small amplitude, linearly stable, time quasi-periodic standing water wave solutions – i.e. periodic and even in the space variable x – of a bi-dimensional ocean with finite depth under the action of pure gravity. Such a result holds for all the values of the depth parameter in a Borel set of asymptotically full measure.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Nota-WW-revised.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Dimensione
325.26 kB
Formato
Adobe PDF
|
325.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.