We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamiltonian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero and HUM method to prove the controllability of the linearized problem. Then we apply a Nash–Moser–Hörmander implicit function theorem as a black box.
Baldi, P., Haus, E., Montalto, R. (2018). Controllability of quasi-linear Hamiltonian NLS equations. JOURNAL OF DIFFERENTIAL EQUATIONS, 264(3), 1786-1840 [10.1016/j.jde.2017.10.009].
Controllability of quasi-linear Hamiltonian NLS equations
Baldi, Pietro;Haus, Emanuele;MONTALTO, RICCARDO
2018-01-01
Abstract
We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamiltonian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero and HUM method to prove the controllability of the linearized problem. Then we apply a Nash–Moser–Hörmander implicit function theorem as a black box.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
control-NLS-REVISED-aug-4.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Dimensione
550.44 kB
Formato
Adobe PDF
|
550.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.