The excellent piezoelectric properties of Polyvinyl Fluoride (PVDF), its low cost, ease of workability and high chemical resistance, make it very useful to develop sensing devices for structural health monitoring applications (SHM). However, challenges occur when the devices need to be embedded into a hosting material or structure which could instead be damaged. In this study, the PVDF device is transformed into an ultralight and porous piezoelectric mat formed by ultra-long and randomly distributed micro fibers. The piezoelectric mat is embedded into a glass fiber (GF) composite by intercalating it with the GF layers during the lay-up process. This approach allows the realization of an intelligent composite that is capable to self-monitor its strain or vibrations during in-service life.
Fabriani, F., Lanzara, G. (2019). Self-sensing composite materials with intelligent fabrics. In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2019. American Society of Mechanical Engineers (ASME) [10.1115/SMASIS2019-5684].
Self-sensing composite materials with intelligent fabrics
Fabriani F.;Lanzara G.
Conceptualization
2019-01-01
Abstract
The excellent piezoelectric properties of Polyvinyl Fluoride (PVDF), its low cost, ease of workability and high chemical resistance, make it very useful to develop sensing devices for structural health monitoring applications (SHM). However, challenges occur when the devices need to be embedded into a hosting material or structure which could instead be damaged. In this study, the PVDF device is transformed into an ultralight and porous piezoelectric mat formed by ultra-long and randomly distributed micro fibers. The piezoelectric mat is embedded into a glass fiber (GF) composite by intercalating it with the GF layers during the lay-up process. This approach allows the realization of an intelligent composite that is capable to self-monitor its strain or vibrations during in-service life.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.