In this paper we prove the existence of small-amplitude quasi-periodic solutions with Sobolev regularity, for the d-dimensional forced Kirchhoff equation with periodic boundary conditions. This is the first result of this type for a quasi-linear equation in high dimension. The proof is based on a Nash–Moser scheme in Sobolev class and a regularization procedure combined with a multiscale analysis in order to solve the linearized problem at any approximate solution.

Corsi, L., Montalto, R. (2018). Quasi-periodic solutions for the forced Kirchhoff equation on $T^d$. NONLINEARITY, 31(11), 5075-5109 [10.1088/1361-6544/aad6fe].

Quasi-periodic solutions for the forced Kirchhoff equation on $T^d$

Corsi, Livia;Montalto, Riccardo
2018-01-01

Abstract

In this paper we prove the existence of small-amplitude quasi-periodic solutions with Sobolev regularity, for the d-dimensional forced Kirchhoff equation with periodic boundary conditions. This is the first result of this type for a quasi-linear equation in high dimension. The proof is based on a Nash–Moser scheme in Sobolev class and a regularization procedure combined with a multiscale analysis in order to solve the linearized problem at any approximate solution.
2018
Corsi, L., Montalto, R. (2018). Quasi-periodic solutions for the forced Kirchhoff equation on $T^d$. NONLINEARITY, 31(11), 5075-5109 [10.1088/1361-6544/aad6fe].
File in questo prodotto:
File Dimensione Formato  
corsimontalto-nonlinearity.pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 2.84 MB
Formato Adobe PDF
2.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/366261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact