We analyze dissipative scale effects within a one-dimensional theory, developed in [L. Anand et al., J. Mech. Phys. Solids, 53 (2005), pp. 1789 1826], which describes plastic flow in a thin strip undergoing simple shear. We give a variational characterization of the yield (shear) stress-the threshold for the onset of plastic flow-and we use this characterization, together with results from [M. Amar et al., J. Math. Anal. Appl., 397 (2011), pp. 381 401], to obtain an explicit relation between the yield stress and the height of the strip. The relation we obtain confirms that thinner specimens are stronger, in the sense that they display higher yield stress.

Chiricotto, M., Giacomelli, L., & Tomassetti, G. (2016). Dissipative scale effects in strain-gradient plasticity: The case of simple shear. SIAM JOURNAL ON APPLIED MATHEMATICS, 76(2), 688-704 [10.1137/15M1048227].

Dissipative scale effects in strain-gradient plasticity: The case of simple shear

Tomassetti G.
2016

Abstract

We analyze dissipative scale effects within a one-dimensional theory, developed in [L. Anand et al., J. Mech. Phys. Solids, 53 (2005), pp. 1789 1826], which describes plastic flow in a thin strip undergoing simple shear. We give a variational characterization of the yield (shear) stress-the threshold for the onset of plastic flow-and we use this characterization, together with results from [M. Amar et al., J. Math. Anal. Appl., 397 (2011), pp. 381 401], to obtain an explicit relation between the yield stress and the height of the strip. The relation we obtain confirms that thinner specimens are stronger, in the sense that they display higher yield stress.
Chiricotto, M., Giacomelli, L., & Tomassetti, G. (2016). Dissipative scale effects in strain-gradient plasticity: The case of simple shear. SIAM JOURNAL ON APPLIED MATHEMATICS, 76(2), 688-704 [10.1137/15M1048227].
File in questo prodotto:
File Dimensione Formato  
cgt15_siap_revised.pdf

accesso aperto

Descrizione: versione accettata per la pubblicazione
Tipologia: Documento in Post-print
Dimensione 435.76 kB
Formato Adobe PDF
435.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/372333
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact