We consider the following Dirichlet problem(formula persented) and f non-negative and non-decreasing. We show existence and uniqueness of solutions uλ for any λ and discuss their asymptotic behavior as λ → −∞. In the expansion of uλ large solutions naturally appear.

Battaglia, L., Gladiali, F., & Grossi, M. (2020). ASYMPTOTIC BEHAVIOR of MINIMAL SOLUTIONS of −∆u = λf(u) AS λ → −∞. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 41(2), 681-700 [10.3934/dcds.2020293].

ASYMPTOTIC BEHAVIOR of MINIMAL SOLUTIONS of −∆u = λf(u) AS λ → −∞

Battaglia L.;Grossi M.
2020

Abstract

We consider the following Dirichlet problem(formula persented) and f non-negative and non-decreasing. We show existence and uniqueness of solutions uλ for any λ and discuss their asymptotic behavior as λ → −∞. In the expansion of uλ large solutions naturally appear.
Battaglia, L., Gladiali, F., & Grossi, M. (2020). ASYMPTOTIC BEHAVIOR of MINIMAL SOLUTIONS of −∆u = λf(u) AS λ → −∞. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 41(2), 681-700 [10.3934/dcds.2020293].
File in questo prodotto:
File Dimensione Formato  
1911.03152.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 265.14 kB
Formato Adobe PDF
265.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/380326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact