Toroidal time series are temporal sequences of bivariate angular observations that often arise in environmental and ecological studies. A hidden semi-Markov model is proposed for segmenting these data according to a finite number of latent classes, associated toroidal densities. The model conveniently integrates circular correlation, multimodality and temporal auto-correlation. A computationally efficient EM algorithm is proposed for parameter estimation. The proposal is illustrated on a time series of wind and sea wave directions.

Lagona, F., Maruotti, A. (2020). A hidden semi-Markov model for segmenting environmental toroidal data. In 52emes Journees de Statistiques de la Societe Francaise de Statistique (SFdS) Recueil des soumissions, 494-499. (pp.494-499).

A hidden semi-Markov model for segmenting environmental toroidal data

Francesco Lagona
;
2020-01-01

Abstract

Toroidal time series are temporal sequences of bivariate angular observations that often arise in environmental and ecological studies. A hidden semi-Markov model is proposed for segmenting these data according to a finite number of latent classes, associated toroidal densities. The model conveniently integrates circular correlation, multimodality and temporal auto-correlation. A computationally efficient EM algorithm is proposed for parameter estimation. The proposal is illustrated on a time series of wind and sea wave directions.
2020
Lagona, F., Maruotti, A. (2020). A hidden semi-Markov model for segmenting environmental toroidal data. In 52emes Journees de Statistiques de la Societe Francaise de Statistique (SFdS) Recueil des soumissions, 494-499. (pp.494-499).
File in questo prodotto:
File Dimensione Formato  
PDFsam_lagonaSFS2020book_jds2020_fr_compressed.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 637.13 kB
Formato Adobe PDF
637.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/385470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact