The tumor stroma plays a pivotal role in colon cancer genesis and progression. It was observed that collagen fibers in the extracellular matrix (ECM) of cancer stroma, undergo a strong remodeling. These fibrous proteins result more aligned and compact than in physiological conditions, creating a microenvironment that favors cancer development. In this work, micro-FTIR spectroscopy was applied to investigate the chemical modifications in the tumor stroma. Using Fuzzy C-means clustering, mean spectra from diseased and normal stroma were compared and collagen was found to be responsible for the main differences between them. Specifically, the modified absorptions at 1203, 1238, 1284 cm−1 and 1338 cm−1 wavenumbers, were related to the amide III band and CH2 bending of side chains. These signals are sensitive to the interactions between the α-chains in the triple helices of collagen structure. This provided robust chemical evidence that in cancer ECM, collagen fibers are more parallelized, stiff and ordered than in normal tissue. Principal Component Analysis (PCA) applied to the spectra from malignant and normal stroma confirmed these findings. Using LDA (Linear Discriminant Analysis) classification, the absorptions 1203, 1238, 1284 and 1338 cm−1 were examined as spectral biomarkers, obtaining quite promising results. The use of a PCA-LDA prediction model on samples with moderate tumor degree further showed that the stroma chemical modifications are more indicative of malignancy compared to the epithelium. These preliminary findings have shown that micro-FTIR spectroscopy, focused on collagen signals, could become a promising tool for colon cancer diagnosis.

De Santis, S., Porcelli, F., Sotgiu, G., Crescenzi, A., Ceccucci, A., Verri, M., et al. (2022). Identification of remodeled collagen fibers in tumor stroma by FTIR Micro-spectroscopy: A new approach to recognize the colon carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR BASIS OF DISEASE, 1868(1), 166279 [10.1016/j.bbadis.2021.166279].

Identification of remodeled collagen fibers in tumor stroma by FTIR Micro-spectroscopy: A new approach to recognize the colon carcinoma

De Santis S.
;
Porcelli F.;Sotgiu G.;Ceccucci A.;Orsini M.
2022

Abstract

The tumor stroma plays a pivotal role in colon cancer genesis and progression. It was observed that collagen fibers in the extracellular matrix (ECM) of cancer stroma, undergo a strong remodeling. These fibrous proteins result more aligned and compact than in physiological conditions, creating a microenvironment that favors cancer development. In this work, micro-FTIR spectroscopy was applied to investigate the chemical modifications in the tumor stroma. Using Fuzzy C-means clustering, mean spectra from diseased and normal stroma were compared and collagen was found to be responsible for the main differences between them. Specifically, the modified absorptions at 1203, 1238, 1284 cm−1 and 1338 cm−1 wavenumbers, were related to the amide III band and CH2 bending of side chains. These signals are sensitive to the interactions between the α-chains in the triple helices of collagen structure. This provided robust chemical evidence that in cancer ECM, collagen fibers are more parallelized, stiff and ordered than in normal tissue. Principal Component Analysis (PCA) applied to the spectra from malignant and normal stroma confirmed these findings. Using LDA (Linear Discriminant Analysis) classification, the absorptions 1203, 1238, 1284 and 1338 cm−1 were examined as spectral biomarkers, obtaining quite promising results. The use of a PCA-LDA prediction model on samples with moderate tumor degree further showed that the stroma chemical modifications are more indicative of malignancy compared to the epithelium. These preliminary findings have shown that micro-FTIR spectroscopy, focused on collagen signals, could become a promising tool for colon cancer diagnosis.
De Santis, S., Porcelli, F., Sotgiu, G., Crescenzi, A., Ceccucci, A., Verri, M., et al. (2022). Identification of remodeled collagen fibers in tumor stroma by FTIR Micro-spectroscopy: A new approach to recognize the colon carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR BASIS OF DISEASE, 1868(1), 166279 [10.1016/j.bbadis.2021.166279].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/398840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact