Business process re-engineering is crucial for manufacturing companies to improve their productivity and efficiency. The identification of the main criticalities affecting the production processes and the implementation of effective re-engineering solutions can significantly reduce the company losses. However, such actions can be unsuccessful if suitable preliminary investigations on the effectiveness of the solutions are not performed. This paper proposes an integrated process re-engineering technique that allows to: identify workflows via the Unified Modeling Language; model and simulate the business process via Colored Petri Nets (CPNs); detect bottlenecks and waste sources through the Value Stream Mapping tool; rank the impact of the detected criticalities via a mathematical formulation of the Genba-Shikumi lean philosophy; simulate the re-engineering actions and evaluate their effectiveness using the CPN model. The aim is to offer an intuitive tool for strategic decision making, deployable at a managerial level in a digital twin approach. The proposed technique is tested on a textile company located in Southern Italy, showing its effectiveness in removing inefficiencies and ensuring the continuous improvement of the production process.
Cavone, G., Epicoco, N., Dotoli, M. (2020). Process Re-engineering Based on Colored Petri Nets: the Case of an Italian Textile Company. In 28th Mediterranean Conference on Control and Automation (pp.856-861). 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.1109/MED48518.2020.9182937].
Process Re-engineering Based on Colored Petri Nets: the Case of an Italian Textile Company
Cavone, G;
2020-01-01
Abstract
Business process re-engineering is crucial for manufacturing companies to improve their productivity and efficiency. The identification of the main criticalities affecting the production processes and the implementation of effective re-engineering solutions can significantly reduce the company losses. However, such actions can be unsuccessful if suitable preliminary investigations on the effectiveness of the solutions are not performed. This paper proposes an integrated process re-engineering technique that allows to: identify workflows via the Unified Modeling Language; model and simulate the business process via Colored Petri Nets (CPNs); detect bottlenecks and waste sources through the Value Stream Mapping tool; rank the impact of the detected criticalities via a mathematical formulation of the Genba-Shikumi lean philosophy; simulate the re-engineering actions and evaluate their effectiveness using the CPN model. The aim is to offer an intuitive tool for strategic decision making, deployable at a managerial level in a digital twin approach. The proposed technique is tested on a textile company located in Southern Italy, showing its effectiveness in removing inefficiencies and ensuring the continuous improvement of the production process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.