Energy consumption has become a core concern in computing systems. In this context, power capping is an approach that aims at ensuring that the power consumption of a system does not overcome a predefined threshold. Although various power capping techniques exist in the literature, they do not fit well the nature of multi-threaded workloads with shared data accesses and non-minimal thread-level concurrency. For these workloads, scalability may be limited by thread contention on hardware resources and/or data, to the point that performance may even decrease while increasing the thread-level parallelism, indicating scarce ability to exploit the actual computing power available in highly parallel hardware. In this paper, we consider the problem of maximizing the performance of multi-thread applications under a power cap by dynamically tuning the thread-level parallelism and the power state of CPU-cores in combination. Based on experimental observations, we design a technique that adaptively identifies, in linear time within a bi-dimensional space, the optimal parallelism and power state setting. We evaluated the proposed technique with different benchmark applications, and using different methods for synchronizing threads when accessing shared data, and we compared it with other state-of-the-art power capping techniques.

Conoci, S., DI SANZO, P., Ciciani, B., Quaglia, F. (2018). Adaptive performance optimization under power constraint in multi-thread applications with diverse scalability. In ICPE '18 Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering (pp.16-27) [10.1145/3184407.3184419].

Adaptive performance optimization under power constraint in multi-thread applications with diverse scalability

pierangelo di sanzo;
2018-01-01

Abstract

Energy consumption has become a core concern in computing systems. In this context, power capping is an approach that aims at ensuring that the power consumption of a system does not overcome a predefined threshold. Although various power capping techniques exist in the literature, they do not fit well the nature of multi-threaded workloads with shared data accesses and non-minimal thread-level concurrency. For these workloads, scalability may be limited by thread contention on hardware resources and/or data, to the point that performance may even decrease while increasing the thread-level parallelism, indicating scarce ability to exploit the actual computing power available in highly parallel hardware. In this paper, we consider the problem of maximizing the performance of multi-thread applications under a power cap by dynamically tuning the thread-level parallelism and the power state of CPU-cores in combination. Based on experimental observations, we design a technique that adaptively identifies, in linear time within a bi-dimensional space, the optimal parallelism and power state setting. We evaluated the proposed technique with different benchmark applications, and using different methods for synchronizing threads when accessing shared data, and we compared it with other state-of-the-art power capping techniques.
2018
978-1-4503-5095-2
Conoci, S., DI SANZO, P., Ciciani, B., Quaglia, F. (2018). Adaptive performance optimization under power constraint in multi-thread applications with diverse scalability. In ICPE '18 Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering (pp.16-27) [10.1145/3184407.3184419].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/428169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact