Infrastructure networks are crucial elements to ensure the sustainability of the current development model in which the movement of people and goods is essential. On the other hand, transport assets are increasingly exposed to several issues, including climatic conditions changing, vulnerability and exposure to natural hazards such as hydraulic, geomorphological, landslides and seismic phenomena, which can affect the structural integrity causing damages and deteriorations. The context is made even more serious by the degradation of materials and the progressive ageing of infrastructure, often accelerated by environmental conditions and inadequate, or not always effective, maintenance actions. This requires the investigation of novel methods for the large-scale detection of network-scale linear infrastructures, and simultaneously, of detail to diagnose causes and determine the priorities for the most effective countermeasures. The proposed solution is based on a Data-Fusion approach, merging data coming from multisource and multi-scale data, to enhance the interpretation process in a holistic sense. The information comes from spaceborne Multi-temporal SAR Interferometry, complemented by more detailed aerial data, detected by UAVs and Ground Based Non-Destructive Testing Methods, including laser scanner surveys for resolution and digital integrability, high-resolution camera measurements assisted by artificial intelligence for the surface degradation and from prospecting data collected by Ground Penetrating Radar technology. All these data can be simultaneously analyzed into a comprehensive digital platform, providing a useful tool to support operators and public bodies to prioritize maintenance actions. The digital platform can be investigated also using augmented reality tools, capable of generating and reproducing the Digital Twin of the inspected infrastructure into a real environment. This allows any monitoring evaluation through a diagnostic technique that integrates spatial, aerial, ground-based and geophysical surveys, allowing navigation within the infrastructure. Potential applications are numerous, ranging from mapping of wide areas affected by potential criticality to the definition of the main vulnerabilities related to the seismic and hydraulic risks, the analysis of land changes surrounding the assets following extreme natural events, and the reconstruction of historical deformative trends of roads, railways and bridges through the interpretation of SAR data.
Gagliardi, V., Bianchini Ciampoli, L., D'Amico, F., Calvi, A., Benedetto, A. (2023). Novel perspectives in transport infrastructure management: Data-Fusion, integrated monitoring and augmented reality. In Proceedings of EGU General Assembly 2023 [10.5194/egusphere-egu23-15542].
Novel perspectives in transport infrastructure management: Data-Fusion, integrated monitoring and augmented reality
V. Gagliardi;L. Bianchini Ciampoli;F. D'Amico;A. Calvi;A. Benedetto
2023-01-01
Abstract
Infrastructure networks are crucial elements to ensure the sustainability of the current development model in which the movement of people and goods is essential. On the other hand, transport assets are increasingly exposed to several issues, including climatic conditions changing, vulnerability and exposure to natural hazards such as hydraulic, geomorphological, landslides and seismic phenomena, which can affect the structural integrity causing damages and deteriorations. The context is made even more serious by the degradation of materials and the progressive ageing of infrastructure, often accelerated by environmental conditions and inadequate, or not always effective, maintenance actions. This requires the investigation of novel methods for the large-scale detection of network-scale linear infrastructures, and simultaneously, of detail to diagnose causes and determine the priorities for the most effective countermeasures. The proposed solution is based on a Data-Fusion approach, merging data coming from multisource and multi-scale data, to enhance the interpretation process in a holistic sense. The information comes from spaceborne Multi-temporal SAR Interferometry, complemented by more detailed aerial data, detected by UAVs and Ground Based Non-Destructive Testing Methods, including laser scanner surveys for resolution and digital integrability, high-resolution camera measurements assisted by artificial intelligence for the surface degradation and from prospecting data collected by Ground Penetrating Radar technology. All these data can be simultaneously analyzed into a comprehensive digital platform, providing a useful tool to support operators and public bodies to prioritize maintenance actions. The digital platform can be investigated also using augmented reality tools, capable of generating and reproducing the Digital Twin of the inspected infrastructure into a real environment. This allows any monitoring evaluation through a diagnostic technique that integrates spatial, aerial, ground-based and geophysical surveys, allowing navigation within the infrastructure. Potential applications are numerous, ranging from mapping of wide areas affected by potential criticality to the definition of the main vulnerabilities related to the seismic and hydraulic risks, the analysis of land changes surrounding the assets following extreme natural events, and the reconstruction of historical deformative trends of roads, railways and bridges through the interpretation of SAR data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.