In the oil and gas industry, manufacturers are continuously engaged in providing machines with improved performance, reliability and availability. First Stage Bucket is one of the most critical gas turbine components, bearing the brunt of very severe operating conditions in terms of high temperature and stresses; aeromechanic behavior is a key characteristic to be checked, to assure the absence of resonances that can lead to damage. Aim of this paper is to introduce a method for aeromechanical verification applied to the new First Stage Bucket for heavy duty MS5002 gas turbine with integrated cover plates. This target is achieved through a significantly cheaper and streamlined test (a rotating test bench facility, formally Wheel Box Test) in place of a full engine test. Scope of Wheel Box Test is the aeromechanical characterization for both Baseline and New bucket, in addition to the validation of the analytical models developed. Wheel Box Test is focused on the acquisition and visualization of dynamic data, simulating different forcing frequencies, and the measurement of natural frequencies, compared with the expected results. Moreover, a Finite Elements Model (FEM) tuning for frequency prediction is performed. Finally, the characterization of different types of dampers in terms of impact on frequencies and damping effect is carried out. Therefore, in line with response assessment and damping levels estimation, the most suitable damper is selected. The proposed approach could be extended for other machine models and for mechanical audits.
Mariottini, M., Pieroni, N., Bertini, P., Pacifici, B., Giorgetti, A. (2019). Wheel box test aeromechanical verification of new first stage bucket with integrated cover plates for MS5002 GT. In Proceedings of the ASME Turbo Expo. American Society of Mechanical Engineers (ASME) [10.1115/GT2019-90075].
Wheel box test aeromechanical verification of new first stage bucket with integrated cover plates for MS5002 GT
Giorgetti A.
2019-01-01
Abstract
In the oil and gas industry, manufacturers are continuously engaged in providing machines with improved performance, reliability and availability. First Stage Bucket is one of the most critical gas turbine components, bearing the brunt of very severe operating conditions in terms of high temperature and stresses; aeromechanic behavior is a key characteristic to be checked, to assure the absence of resonances that can lead to damage. Aim of this paper is to introduce a method for aeromechanical verification applied to the new First Stage Bucket for heavy duty MS5002 gas turbine with integrated cover plates. This target is achieved through a significantly cheaper and streamlined test (a rotating test bench facility, formally Wheel Box Test) in place of a full engine test. Scope of Wheel Box Test is the aeromechanical characterization for both Baseline and New bucket, in addition to the validation of the analytical models developed. Wheel Box Test is focused on the acquisition and visualization of dynamic data, simulating different forcing frequencies, and the measurement of natural frequencies, compared with the expected results. Moreover, a Finite Elements Model (FEM) tuning for frequency prediction is performed. Finally, the characterization of different types of dampers in terms of impact on frequencies and damping effect is carried out. Therefore, in line with response assessment and damping levels estimation, the most suitable damper is selected. The proposed approach could be extended for other machine models and for mechanical audits.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.