We define differential item functioning in the context of panel data. We then present a general approach to detect measurement non-invariance cases in this context. We use a model selection procedure based on the Bayesian information criterion (BIC). A real data application and a simulation study are presented to illustrate and motivate the methods.

Dotto, F., Farcomeni, A., Di Mari, R., Punzo, A. (2023). Measurement Invariance: a method based on Latent Markov Models. In CLADAG 2023 Book of Abstracts and short papers (pp.441-444).

Measurement Invariance: a method based on Latent Markov Models

Francesco Dotto
;
2023-01-01

Abstract

We define differential item functioning in the context of panel data. We then present a general approach to detect measurement non-invariance cases in this context. We use a model selection procedure based on the Bayesian information criterion (BIC). A real data application and a simulation study are presented to illustrate and motivate the methods.
2023
9788891935632
Dotto, F., Farcomeni, A., Di Mari, R., Punzo, A. (2023). Measurement Invariance: a method based on Latent Markov Models. In CLADAG 2023 Book of Abstracts and short papers (pp.441-444).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/454707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact