We present the first results of the Chandra Cool Targets (CCT) survey of the Second Bologna Catalog (B2CAT) of powerful radio sources, aimed at investigating the extended X-ray emission surrounding these sources. For the first 33 sources observed in the B2CAT CCT survey, we performed both imaging and spectral X-ray analysis, producing multiband Chandra images, and compared these images with radio observations. To evaluate the presence of extended emission in the X-rays, we extracted surface flux profiles comparing them with simulated ACIS point-spread functions. We detected X-ray nuclear emission for 28 sources. In addition, we detected eight regions of increased X-ray flux originating from radio hot spots or jet knots, and a region of decreased flux, possibly associated with an X-ray cavity. We performed X-ray spectral analysis for 15 nuclei and found intrinsic absorption significantly larger than the Galactic values in four of them. We detected significant extended X-ray emission in five sources, and fitted their spectra with thermal models with gas temperatures & SIM;2 keV. In the case of B2.1 0742+31, the surrounding hot gas is compatible with the intracluster medium of low-luminosity clusters of galaxies, while the X-ray diffuse emission surrounding the highly disturbed wide-angle-tailed radio galaxy B2.3 2254+35 features a luminosity similar to those of relatively bright galaxy groups, although its temperature is similar to those of low-luminosity galaxy clusters. These results highlight the power of low-frequency radio selection, combined with short Chandra snapshot observations, for investigating the properties of X-ray emission from radio sources.

Paggi, A., Massaro, F., Peña-Herazo, H., Missaglia, V., Jimenez-Gallardo, A., Ricci, F., et al. (2023). The Multiwavelength Environment of Second Bologna Catalog Sources. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 268(1) [10.3847/1538-4365/ace436].

The Multiwavelength Environment of Second Bologna Catalog Sources

Ricci, F
Membro del Collaboration Group
;
2023-01-01

Abstract

We present the first results of the Chandra Cool Targets (CCT) survey of the Second Bologna Catalog (B2CAT) of powerful radio sources, aimed at investigating the extended X-ray emission surrounding these sources. For the first 33 sources observed in the B2CAT CCT survey, we performed both imaging and spectral X-ray analysis, producing multiband Chandra images, and compared these images with radio observations. To evaluate the presence of extended emission in the X-rays, we extracted surface flux profiles comparing them with simulated ACIS point-spread functions. We detected X-ray nuclear emission for 28 sources. In addition, we detected eight regions of increased X-ray flux originating from radio hot spots or jet knots, and a region of decreased flux, possibly associated with an X-ray cavity. We performed X-ray spectral analysis for 15 nuclei and found intrinsic absorption significantly larger than the Galactic values in four of them. We detected significant extended X-ray emission in five sources, and fitted their spectra with thermal models with gas temperatures & SIM;2 keV. In the case of B2.1 0742+31, the surrounding hot gas is compatible with the intracluster medium of low-luminosity clusters of galaxies, while the X-ray diffuse emission surrounding the highly disturbed wide-angle-tailed radio galaxy B2.3 2254+35 features a luminosity similar to those of relatively bright galaxy groups, although its temperature is similar to those of low-luminosity galaxy clusters. These results highlight the power of low-frequency radio selection, combined with short Chandra snapshot observations, for investigating the properties of X-ray emission from radio sources.
2023
Paggi, A., Massaro, F., Peña-Herazo, H., Missaglia, V., Jimenez-Gallardo, A., Ricci, F., et al. (2023). The Multiwavelength Environment of Second Bologna Catalog Sources. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 268(1) [10.3847/1538-4365/ace436].
File in questo prodotto:
File Dimensione Formato  
Paggi_2023_ApJS_268_31.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/461634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact