This paper studies planar drawings of graphs in which each vertex is represented as a point along a sequence of horizontal lines, called levels, and each edge is either a horizontal segment or a strictly y-monotone curve. A graph is s-span weakly leveled planar if it admits such a drawing where the edges have span at most s; the span of an edge is the number of levels it touches minus one. We investigate the problem of computing s-span weakly leveled planar drawings from both the computational and the combinatorial perspectives. We prove the problem to be para-NP-hard with respect to its natural parameter s and investigate its complexity with respect to widely used structural parameters. We show the existence of a polynomial-size kernel with respect to vertex cover number and prove that the problem is FPT when parameterized by treedepth. We also present upper and lower bounds on the span for various graph classes. Notably, we show that cycle trees, a family of 2-outerplanar graphs generalizing Halin graphs, are Θ(log n)-span weakly leveled planar and 4-span weakly leveled planar when 3-connected. As a byproduct of these combinatorial results, we obtain improved bounds on the edge-length ratio of the graph families under consideration.

Bekos, M.A., DA LOZZO, G., Frati, F., Gupta, S., Kindermann, P., Liotta, G., et al. (2024). Weakly Leveled Planarity with Bounded Span. In Leibniz International Proceedings in Informatics, LIPIcs. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/lipics.gd.2024.19].

Weakly Leveled Planarity with Bounded Span

Giordano Da Lozzo;Fabrizio Frati;Ignaz Rutter;
2024-01-01

Abstract

This paper studies planar drawings of graphs in which each vertex is represented as a point along a sequence of horizontal lines, called levels, and each edge is either a horizontal segment or a strictly y-monotone curve. A graph is s-span weakly leveled planar if it admits such a drawing where the edges have span at most s; the span of an edge is the number of levels it touches minus one. We investigate the problem of computing s-span weakly leveled planar drawings from both the computational and the combinatorial perspectives. We prove the problem to be para-NP-hard with respect to its natural parameter s and investigate its complexity with respect to widely used structural parameters. We show the existence of a polynomial-size kernel with respect to vertex cover number and prove that the problem is FPT when parameterized by treedepth. We also present upper and lower bounds on the span for various graph classes. Notably, we show that cycle trees, a family of 2-outerplanar graphs generalizing Halin graphs, are Θ(log n)-span weakly leveled planar and 4-span weakly leveled planar when 3-connected. As a byproduct of these combinatorial results, we obtain improved bounds on the edge-length ratio of the graph families under consideration.
2024
Bekos, M.A., DA LOZZO, G., Frati, F., Gupta, S., Kindermann, P., Liotta, G., et al. (2024). Weakly Leveled Planarity with Bounded Span. In Leibniz International Proceedings in Informatics, LIPIcs. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/lipics.gd.2024.19].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/493419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact