We provide a new realisability model based on orthogonality for the multiplicative fragment of linear logic, both in presence of generalised axioms (MLL+) and in the standard case (MLL). The novelty is the definition of cut elimination for generalised axioms. We prove that our model is adequate and complete both for MLL+ and MLL.

Ragot, A., Seiller, T., TORTORA DE FALCO, L. (2025). Linear Realisability over nets: multiplicatives. In leibniz international proceedings in informatics. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.CSL.2025.43].

Linear Realisability over nets: multiplicatives

Ragot Adrien;Tortora de Falco Lorenzo
2025-01-01

Abstract

We provide a new realisability model based on orthogonality for the multiplicative fragment of linear logic, both in presence of generalised axioms (MLL+) and in the standard case (MLL). The novelty is the definition of cut elimination for generalised axioms. We prove that our model is adequate and complete both for MLL+ and MLL.
2025
Ragot, A., Seiller, T., TORTORA DE FALCO, L. (2025). Linear Realisability over nets: multiplicatives. In leibniz international proceedings in informatics. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.CSL.2025.43].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/510182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact