Variables are rarely, if ever, measured without error. In this paper we propose to use the Object-Oriented Bayesian Networks architecture to model measurement errors. A mixed measurement error model is introduced to model the respondent error. Then an Object-Oriented Bayesian network, implementing the model above, is developed to represent how the actually observed values are generated from the original ones. Furthermore, potentialities and possible extensions of such an approach are discussed.

Marella, D., Vicard, P. (2010). Measurement error modelling using Object-Oriented Bayesian Networks. In Atti della XLV Riunione Scientifica della Società Italiana di Statistica.. Padova : CLEUP.

Measurement error modelling using Object-Oriented Bayesian Networks

MARELLA, Daniela;VICARD, Paola
2010-01-01

Abstract

Variables are rarely, if ever, measured without error. In this paper we propose to use the Object-Oriented Bayesian Networks architecture to model measurement errors. A mixed measurement error model is introduced to model the respondent error. Then an Object-Oriented Bayesian network, implementing the model above, is developed to represent how the actually observed values are generated from the original ones. Furthermore, potentialities and possible extensions of such an approach are discussed.
2010
978-88-6129-566-7
Marella, D., Vicard, P. (2010). Measurement error modelling using Object-Oriented Bayesian Networks. In Atti della XLV Riunione Scientifica della Società Italiana di Statistica.. Padova : CLEUP.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/176036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact