Green roofs have increasingly been used in urban contexts to increase thermal insulation, provide habitat for species, and increase urban biodiversity. Here, we provide the results of a monitoring experiment to document (1) the survival rate of planted species of a green roof with no maintenance and (2) the natural colonization by new species of the same roof. Each month for one year, we conducted floristic and vegetation surveys, identifying the species of colonizers and monitoring the cover of both planted and wild species. We conducted various statistical tests to determine the driving factors of spontaneous plants’ colonization of the unattended green roof. Among the planted species, several Mediterranean species thrived despite the lack of irrigation, and among these, Thymus serpyllum L. (a prostrate shrub) maintained the highest cover. The spontaneous colonization involved 62 species, including Mediterranean (38%) and exotic species (15%), primarily annual ruderals. The difficult climatic and pedological conditions (i.e., solar irradiation, soil structure) of the green roof have driven the colonization process and the survival of the colonizers. Research on dynamic colonization processes can contribute to designing green roofs with greater biodiversity, a more sustainable approach to long-term management, enhanced urban climate adaptation, and greater aesthetic appeal.
Bellini, A., Savo, V., Caneva, G., Casalini, R., D'Amico, E., Bartoli, F. (2025). How a Green Roof Becomes Biodiverse: Vegetation Analysis on a Green Roof with no Maintenance in Rome (Italy). PLANTS, 14(3180) [10.3390/plants14203180].
How a Green Roof Becomes Biodiverse: Vegetation Analysis on a Green Roof with no Maintenance in Rome (Italy)
Amii BelliniInvestigation
;Valentina Savo
Writing – Original Draft Preparation
;Giulia CanevaSupervision
;Elettra D'AmicoInvestigation
;Flavia BartoliConceptualization
2025-01-01
Abstract
Green roofs have increasingly been used in urban contexts to increase thermal insulation, provide habitat for species, and increase urban biodiversity. Here, we provide the results of a monitoring experiment to document (1) the survival rate of planted species of a green roof with no maintenance and (2) the natural colonization by new species of the same roof. Each month for one year, we conducted floristic and vegetation surveys, identifying the species of colonizers and monitoring the cover of both planted and wild species. We conducted various statistical tests to determine the driving factors of spontaneous plants’ colonization of the unattended green roof. Among the planted species, several Mediterranean species thrived despite the lack of irrigation, and among these, Thymus serpyllum L. (a prostrate shrub) maintained the highest cover. The spontaneous colonization involved 62 species, including Mediterranean (38%) and exotic species (15%), primarily annual ruderals. The difficult climatic and pedological conditions (i.e., solar irradiation, soil structure) of the green roof have driven the colonization process and the survival of the colonizers. Research on dynamic colonization processes can contribute to designing green roofs with greater biodiversity, a more sustainable approach to long-term management, enhanced urban climate adaptation, and greater aesthetic appeal.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


