SABINO, LORENZO
SABINO, LORENZO
Dipartimento di Ingegneria Industriale, Elettronica e Meccanica
A Comparative Analysis on Different Deep Neural Network Models for Magnetic Hysteresis with Distorted Excitation Waveforms
2024-01-01 Lozito, G. M.; Quercio, M.; Sabino, L.; Laudani, A.
A Hybrid LSTM-CNN Model for Short-Term Photovoltaic Power Forecasting in Italy
2024-01-01 Asghar, R.; Riganti Fulginei, F.; Quercio, M.; Sabino, L.; Crescimbini, F.; Abusara, M.
A novel dual-stream attention-based hybrid network for solar power forecasting
2025-01-01 Asghar, R.; Quercio, M.; Sabino, L.; Mahrouch, A.; Riganti Fulginei, F.
Day-Ahead Photovoltaic Power Forecasting Using a Hybrid BiLSTM-CNN Model
2024-01-01 Asghar, R.; Riganti Fulginei, F.; Quercio, M.; Maoz, M.; Sabino, L.; Abusara, M.
Development of a Neural Network Approach to Evaluate Magnetic Losses in Nanocrystalline Transformers
2024-01-01 Bertolini, V.; Sabino, L.; Stella, M.; Faba, A.; Riganti Fulginei, F.; Crescimbini, F.; Cardelli, E.
Evaluation of Technical Aspects of Solar Photovoltaic (PV) Power Installations on Farmland
2025-01-01 Sabino, L.; Asghar, R.; Crescimbini, F.; Riganti Fulginei, F.
Experimental measurements and numerical modelling of additively manufactured Fe-Si cores
2024-01-01 Stella, M.; Faba, A.; RIGANTI FULGINEI, Francesco; Quercio, M.; Scorretti, R.; Bertolini, V.; Sabino, L.; Tiismus, H.; Kallaste, A.; Cardelli, E.
Low-Complexity Neural Networks for Electrical Load Forecasting in Renewable Energy Communities
2024-01-01 Becchi, L.; Bindi, M.; Intravaia, M.; Sabino, L.; Garzon Alfonso, C. C.; Grasso, F.; Riganti Fulginei, F.; Crescimbini, F.
Modelling of Magnetization Processes of 3D-Printed Fe-Si Components by Means of an Artificial Neural Network Implemented in a FEM Scheme
2024-01-01 Stella, M.; Faba, A.; Bertolini, V.; Riganti Fulginei, F.; Sabino, L.; Tiismus, H.; Kallaste, A.; Cardelli, E.
Modelling of PV systems for preliminary technical analysis of PV power plants on agricultural land sites
2024-01-01 Sabino, L.; Riganti Fulginei, F.; Crescimbini, F.; Cristianlazariou, G.
Neural Network Approaches for State of Charge Prediction of Rechargeable Lithium Polymer Batteries
2024-01-01 Apa, L.; Del Prete, Z.; Forconi, F.; Palermo, M.; Riganti fulginei, F.; Rizzuto, E.; Sabino, L.
Prediction of DC/DC Boost Converter Switching Power Losses Using a Backpropagation Algorithm Neural Network
2024-01-01 Quercio, M.; Sabino, L.; Lozito, G. M.; Asghar, R.; Parise, M.; Riganti Fulginei, F.
State-of-Charge assessment of Li-ion battery using Genetic Algorithm-Neural Network (GANN)
2024-01-01 Cardelli, E.; Crescimbini, F.; RIGANTI FULGINEI, Francesco; Quercio, M.; Sabino, L.
Symbolic Regression Method for Estimating Distance Between Two Coils of an Inductive Wireless Power Transfer System
2025-01-01 Milillo, D.; Sabino, L.; Asghar, R.; Riganti Fulginei, F.
Titolo | Data di pubblicazione | Autore(i) | File |
---|---|---|---|
A Comparative Analysis on Different Deep Neural Network Models for Magnetic Hysteresis with Distorted Excitation Waveforms | 1-gen-2024 | Lozito, G. M.; Quercio, M.; Sabino, L.; Laudani, A. | |
A Hybrid LSTM-CNN Model for Short-Term Photovoltaic Power Forecasting in Italy | 1-gen-2024 | Asghar, R.; Riganti Fulginei, F.; Quercio, M.; Sabino, L.; Crescimbini, F.; Abusara, M. | |
A novel dual-stream attention-based hybrid network for solar power forecasting | 1-gen-2025 | Asghar, R.; Quercio, M.; Sabino, L.; Mahrouch, A.; Riganti Fulginei, F. | |
Day-Ahead Photovoltaic Power Forecasting Using a Hybrid BiLSTM-CNN Model | 1-gen-2024 | Asghar, R.; Riganti Fulginei, F.; Quercio, M.; Maoz, M.; Sabino, L.; Abusara, M. | |
Development of a Neural Network Approach to Evaluate Magnetic Losses in Nanocrystalline Transformers | 1-gen-2024 | Bertolini, V.; Sabino, L.; Stella, M.; Faba, A.; Riganti Fulginei, F.; Crescimbini, F.; Cardelli, E. | |
Evaluation of Technical Aspects of Solar Photovoltaic (PV) Power Installations on Farmland | 1-gen-2025 | Sabino, L.; Asghar, R.; Crescimbini, F.; Riganti Fulginei, F. | |
Experimental measurements and numerical modelling of additively manufactured Fe-Si cores | 1-gen-2024 | Stella, M.; Faba, A.; RIGANTI FULGINEI, Francesco; Quercio, M.; Scorretti, R.; Bertolini, V.; Sabino, L.; Tiismus, H.; Kallaste, A.; Cardelli, E. | |
Low-Complexity Neural Networks for Electrical Load Forecasting in Renewable Energy Communities | 1-gen-2024 | Becchi, L.; Bindi, M.; Intravaia, M.; Sabino, L.; Garzon Alfonso, C. C.; Grasso, F.; Riganti Fulginei, F.; Crescimbini, F. | |
Modelling of Magnetization Processes of 3D-Printed Fe-Si Components by Means of an Artificial Neural Network Implemented in a FEM Scheme | 1-gen-2024 | Stella, M.; Faba, A.; Bertolini, V.; Riganti Fulginei, F.; Sabino, L.; Tiismus, H.; Kallaste, A.; Cardelli, E. | |
Modelling of PV systems for preliminary technical analysis of PV power plants on agricultural land sites | 1-gen-2024 | Sabino, L.; Riganti Fulginei, F.; Crescimbini, F.; Cristianlazariou, G. | |
Neural Network Approaches for State of Charge Prediction of Rechargeable Lithium Polymer Batteries | 1-gen-2024 | Apa, L.; Del Prete, Z.; Forconi, F.; Palermo, M.; Riganti fulginei, F.; Rizzuto, E.; Sabino, L. | |
Prediction of DC/DC Boost Converter Switching Power Losses Using a Backpropagation Algorithm Neural Network | 1-gen-2024 | Quercio, M.; Sabino, L.; Lozito, G. M.; Asghar, R.; Parise, M.; Riganti Fulginei, F. | |
State-of-Charge assessment of Li-ion battery using Genetic Algorithm-Neural Network (GANN) | 1-gen-2024 | Cardelli, E.; Crescimbini, F.; RIGANTI FULGINEI, Francesco; Quercio, M.; Sabino, L. | |
Symbolic Regression Method for Estimating Distance Between Two Coils of an Inductive Wireless Power Transfer System | 1-gen-2025 | Milillo, D.; Sabino, L.; Asghar, R.; Riganti Fulginei, F. |